38 research outputs found

    Comprehensive tool for calculation of radiative fluxes: illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics

    Get PDF
    The evaluation of aerosol radiative effect on broadband hemispherical solar flux is often performed using simplified spectral and directional scattering characteristics of atmospheric aerosol and underlying surface reflectance. In this study we present a rigorous yet fast computational tool that accurately accounts for detailed variability of both spectral and angular scattering properties of aerosol and surface reflectance in calculation of direct aerosol radiative effect. The tool is developed as part of the GRASP (Generalized Retrieval of Aerosol and Surface Properties) project. We use the tool to evaluate instantaneous and daily average radiative efficiencies (radiative effect per unit aerosol optical thickness) of several key atmospheric aerosol models over different surface types. We then examine the differences due to neglect of surface reflectance anisotropy, nonsphericity of aerosol particle shape and accounting only for aerosol angular scattering asymmetry instead of using full phase function. For example, it is shown that neglecting aerosol particle nonsphericity causes mainly overestimation of the aerosol cooling effect and that magnitude of this overestimate changes significantly as a function of solar zenith angle (SZA) if the asymmetry parameter is used instead of detailed phase function. It was also found that the nonspherical–spherical differences in the calculated aerosol radiative effect are not modified significantly if detailed BRDF (bidirectional reflectance distribution function) is used instead of Lambertian approximation of surface reflectance. Additionally, calculations show that usage of only angular scattering asymmetry, even for the case of spherical aerosols, modifies the dependence of instantaneous aerosol radiative effect on SZA. This effect can be canceled for daily average values, but only if sun reaches the zenith; otherwise a systematic bias remains. Since the daily average radiative effect is obtained by integration over a range of SZAs, the errors vary with latitude and season. In summary, the present analysis showed that use of simplified assumptions causes systematic biases, rather than random uncertainties, in calculation of both instantaneous and daily average aerosol radiative effect. Finally, we illustrate application of the rigorous aerosol radiative effect calculations performed as part of GRASP aerosol retrieval from real POLDER/PARASOL satellite observations

    Thermal infrared dust optical depth and coarse-mode effective diameter retrieved from collocated MODIS and CALIOP observations

    Get PDF
    In this study, we developed a novel algorithm based on the collocated Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared (TIR) observations and dust vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to simultaneously retrieve dust aerosol optical depth at 10 &micro;m (DAOD10&mu;m) and the coarse-mode dust effective diameter (Deff) over global oceans. The accuracy of the Deff retrieval is assessed by comparing retrieved Deff with the in-situ measured dust particle size distributions (PSDs) from the AER-D, SAMUM-2 and SALTRACE field campaigns through case studies. The new DAOD10&mu;m retrievals were evaluated first through comparisons with the collocated DAOD10.6&mu;m retrieved from the combined Imaging Infrared Radiometer (IIR) and CALIOP observations from our previous study (Zheng et al. 2022). The pixel-to-pixel comparison of the two retrievals indicates a good agreement (R~0.7) and a significant reduction of (~50 %) retrieval uncertainties largely thanks to the better constraint on dust size. In a climatological comparison, the seasonal and regional (5&deg;&times;2&deg;) mean DAOD10um retrievals based on our combined MODIS and CALIOP method are in good agreement with the two independent Infrared Atmospheric Sounding Interferometer (IASI) products over three dust transport regions (i.e., North Atlantic (NA; R = 0.9), Indian Ocean (IO; R = 0.8) and North Pacific (NP; R = 0.7)). Using the new retrievals from 2013 to 2017, we performed a climatological analysis of coarse mode dust Deff over global oceans. We found that dust Deff over IO and NP are up to 20 % smaller than that over NA. Over NA in summer, we found a ~50 % reduction of the number of retrievals with Deff &gt; 5 &mu;m from 15&deg; W to 35&deg; W and a stable trend of Deff average at 4.4 &mu;m from 35&deg; W throughout the Caribbean Sea (90&deg; W). Over NP in spring, only ~5 % of retrieved pixels with Deff &gt; 5 &mu;m are found from 150&deg; E to 180&deg;, while the mean Deff remains stable at 4.0 &mu;m throughout eastern NP. To our best knowledge, this study is the first to retrieve both DAOD and coarse-mode dust particle size over global oceans for multiple years. This retrieval dataset provides insightful information for evaluating dust long-wave radiative effects and coarse mode dust particle size in models.</p

    Minimum principles in electromagnetic scattering by small aspherical particles: Extension to differential cross-sections

    No full text
    In this work we extend earlier findings that optically small and randomly oriented ovaloids extinguish more radiation than equal volume spheres [1], to differential cross-sections. Rather than working with the normalized phase function as is typically done in radiative transfer and in remote sensing, we compute absolute un-normalized differential scattering cross-sections Cscatt(θ) and show that for optically small to moderate size parameters, not only does the integrated extinction by randomly oriented spheroids Cext(θ) exceed that of equal volume spheres but it does so at each scattering angle (θ). Furthermore, at each θ, the effect is monotonic with the aspect ratio (AR) and its magnitude is appreciable for realistic refraction indices of terrestrial aerosols. Spherical shape optimality holds for absorption cross-sections as well. Absorption is not only volume-dependent but increases substantially with asphericity, rising by two orders of magnitude near resonant lines. We also compare the asymmetry parameter (g) and single scattering albedo (ω0) of randomly oriented spheroids to that of equal volume spheres and find that while the dependence of the ratios on the axis ratio is monotonic, change of either sign is possible, depending on the index of refraction. Ice in the microwave and quartz in the thermal IR are used to illustrate applications in atmospheric remote sensing

    Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm

    No full text
    Land surface temperature (LST) is one of the most important variables measured by satellite remote sensing. Public domain data are available from the newly operational Landsat-8 Thermal Infrared Sensor (TIRS). This paper presents an adjustment of the split window algorithm (SWA) for TIRS that uses atmospheric transmittance and land surface emissivity (LSE) as inputs. Various alternatives for estimating these SWA inputs are reviewed, and a sensitivity analysis of the SWA to misestimating the input parameters is performed. The accuracy of the current development was assessed using simulated Modtran data. The root mean square error (RMSE) of the simulated LST was calculated as 0.93 °C. This SWA development is leading to progress in the determination of LST by Landsat-8 TIRS

    Observation and simulation of dust aerosol cycle and impact on radiative fluxes during the FENNEC campaign in summer 2011

    No full text
    International audienceThe Sahara desert is one of the principal worldwide sources of dust aerosol emissions that play significant role in the climatic system. In the framework of the FENNEC campaign, conducted during the summer 2011, we focus on dust radiative effect and impact on the atmospheric dynamics and profile structure. We study the variability of the measured radiative parameters and model atmospheric dynamics during dust plume observations at the FENNEC sites, therefore, trying to understand the link between the Saharan heat low system and dust aerosols. Due to its large size the airborne dust can absorb and scatter not only solar, but also thermal infrared radiation, which requires consideration of both spectral ranges. Analysis of AERONET and other optical observations during the period of intensive campaign in summer 2011 provides information on variability of aerosol optical characteristics and perturbation of solar and TIR flux. We use these observations in conjunction with the meso-scale model RAMS to understand the impact of the dust plumes on the atmospheric dynamics. We also simulate the dust cycle in order to find the contribution of the different emission sources and identify structure of transport over an extended domain. Then, coupling the radiative code (GAME) we calculate the radiative forcing of dust and compare it to the radiative flux observed and computed based on the AERONET observations. Validation of simulations is made using measurements from space-borne CALIOP lidar, SEVIRI and OMI satellites, AERONET ground-based stations and observations acquired onboard the SAFIRE Falcon 20 research aircraft

    Study of African Dust with Multi-Wavelength Raman Lidar During “Shadow” Campaign in Senegal

    No full text
    West Africa and the adjacent oceanic regions are very important locations for studying dust properties and their influence on weather and climate. The SHADOW (Study of SaHAran Dust Over West Africa) campaign is performing a multi-scale and multi-laboratory study of aerosol properties and dynamics using a set of in situ and remote sensing instruments at an observation site located at IRD (Institute for Research and Development) Center, Mbour, Senegal (14°N, 17°W). In this paper, we present the results of lidar measurements performed during the first phase of SHADOW which occurred in March-April, 2015. The multiwavelength Mie-Raman lidar acquired 3β+2α+1δ measurements during this period. This set of measurements has permitted particle intensive properties such as extinction and backscattering Ångström exponents (BAE) for 355/532 nm wavelengths corresponding lidar ratios and depolarization ratio at 532 nm to be determined. The backscattering Ångström exponent during the dust episodes decreased to ~-0.7, while the extinction Ångström exponent though being negative, was greater than -0.2. Low values of BAE can likely be explained by an increase in the imaginary part of the dust refractive index at 355 nm compared to 532 nm
    corecore